REVIEW Confocal scanning optical microscopy and its applications for biological specimens
نویسنده
چکیده
Confocal scanning optical microscopy (CSOM) is a new optical microscopic technique, which offers significant advantages over conventional microscopy. In laser scanning optical microscopy (SOM), the specimen is scanned by a diffractionlimited spot of laser light, and light transmitted or reflected by the in-focus illuminated volume element (voxel) of the specimen, or the fluorescence emission excited within it by the incident light, is focused onto a photodetector. As the illuminating spot is scanned over the specimen, the electrical output from this detector is displayed at the appropriate spatial position on a TV monitor, thus building up a two-dimensional image. In the confocal mode, an aperture, usually slightly smaller in diameter than the Airy disc image, is positioned in the image plane in front of the detector, at a position confocal with the in-focus voxel. Light emanating from this in-focus voxel thus passes through the aperture to the detector, while that from any region above or below the focal plane is defocused at the aperture plane and is thus largely prevented from reaching the detector, contributing essentially nothing to the confocal image. It is this ability to reduce out-of-focus blur, and thus permit accurate non-invasive optical sectioning, that makes confocal scanning microscopy so well suited for the imaging and three-dimensional tomography of stained biological specimens. In this review, I explain the principles of scanning optical microscopy and blur-free confocal imaging, discuss the various imaging modes of confocal microscopy, and illustrate some of its early applications.
منابع مشابه
Blind Deconvolution in 3d Biological Microscopy
Confocal microscopy o ers several advantages over conventional optical microscopy with its small depth-ofeld, its reduction of out-of-focus blur, and its full three-dimensional (3D) image scanning ability. For biomedical applications, it can also acquire images of living cells, usually labeled with one or more uorescent probes. The confocal laser scanning microscope (CLSM) is an optical uoresce...
متن کاملConfocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations
Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relativ...
متن کاملTwo-Photon Microscopy for Deep Tissue Imaging of Living Specimens
Introduction Two-photon microscopy (2PM) provides threedimensional (3D) and four-dimensional (4D) (x, y, z, t) imaging in living specimens or under experimental physiological conditions very close to live. In conjunction with fluorescent labels, 2PM provides a powerful means of investigating the relationships between structure and function at the microscopic level that are key to understanding ...
متن کاملResolution in the ApoTome and the confocal laser scanning microscope: comparison.
The essential feature of the confocal laser scanning microscope (cLSM) is the generation of optical sections by the removal of out-of-focus light. About ten years ago, structured illumination microscopy (SIM) was introduced as an alternative method for obtaining optical sections from biological specimens. Here we compare the resolution of the ApoTome (commercial SIM by Zeiss) to that achieved b...
متن کاملConfocal fluorescence microscopy with the tandem scanning light microscope.
Applications of the tandem scanning confocal microscope (TSM) to fluorescence microscopy and its ability to resolve fluorescent biological structures are described. The TSM, in conjunction with a cooled charge-coupled device (cooled CCD) and conventional epifluorescence light source and filter sets, provided high-resolution, confocal data, so that different fluorescent cellular components were ...
متن کامل